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In order to establish close connections between physical and computational 
processes, it is assumed that the concepts of "state" and of "transition" are 
acceptable both to physicists and to computer scientists, at least in an informal 
way. The aim of this paper is to propose formal definitions of state and 
transition elements on the basis of very low level physical concepts in such a way 
that (1) all physically possible computations can be described as embedded in 
physical processes; (2) the computational aspects of physical processes can be 
described on a well-defined level of abstraction; (3) the gulf between the 
continuous models of physics and the discrete models of computer science can be 
bridged by simple mathematical constructs which may be given a physical 
interpretation; (4) a combinatorial, nonstatistical definition of "information" can 
be given on low levels of abstraction which may serve as a basis to derive 
higher-level concepts of information, e.g., by a statistical or probabilJstic ap- 
proach. Conceivable practical consequences are discussed. 

I N T R O D U C T I O N  

This  p a p e r  a t t empt s  to p rov ide  a c o m m o n  basis  for phys ica l  and  
c o m p u t a t i o n a l  ways of  thinking.  Our  a p p r o a c h  is mo t iva t ed  and guided  by  
the prac t ica l  advan tages  which m a y  be  ga ined  b y  successful ly do ing  so. I f  
this a p p r o a c h  should  turn out  to be  a small ,  bu t  def ini te  step towards  the 
r emo te  (perhaps  i l lusory)  goal  of  found ing  technology  and  na tu ra l  sciences 
on  a theory  of  i n fo rma t ion  flow, the au thor  would  feel r ewarded  b e y o n d  
meri t .  He  makes  no  c la ims whatever  in this direct ion,  bu t  a d m i t s - - i n  o rde r  
to make  his pos i t ion  c l e a r e r - - t h a t  fa int  hopes  for  such a deve lopmen t  have 
also inf luenced this a p p r o a c h  to some extent.  

W e  shall  p roceed  as follows: W e  def ine  four  levels of  desc r ip t ion  for 
processes  and  systems below the level of  c o n t e m p o r a r y  switching techniques,  
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starting with the notion of a relativistic cotemporality relation between 
world points (level 0) and ending with the construction of reversible devices 
("transfers") which are known to be sufficient for supporting all physically 
feasible computations (level 3). We shall not presuppose real-valued metrics, 
coordinate systems, rigid bodies, or precise clocks; rather, we shall rely on 
elementary topology and combinatorics, and prefer to work with binary 
relations. We expect that this self-imposed discipline will pay off in terms of 
simplicity, reliability, and range of application; e.g., an implementation of 
properly connected transfers should be self-synchroNizing and require no 
tuning. 

For the sake of brevity, we restrict our attention to physical effects of a 
single and very simple structural type: that of interaction between two (or 
more) particles. Two-particle interactions are sufficient to support well- 
organized information flow, including computation. However, in order to 
justify our line of reasoning, we shall have to build new bridges between the 
continuous models of physics and the "discrete" models of digital comput- 
ing, and also to take a close look at the issue of partial orderings and 
disorders. 

The numbered assumptions proposed in this paper do not refer to the 
microscopic scale only. Viewed as a collection of axioms, they have finite 
models. 

STATES AND TRANSITIONS ON DIFFERENT LEVELS OF 
DESCRIPTION 

We construct four conceptual levels (as in Brauer, 1980, p. 11) for the 
description of processes and systems, by successive abstraction. We assert 
that levels 0-2 can be used both in physics and in computing (including the 
behavior of distributed computer systems). Level 3 is an abstraction of level 
2 which highlights the properties of information flow in the case of bitwise 
decomposition; devices with full computing capability have been specified 
on level 3. Individuals of level n will represent sets of individuals of level 
( n - l ) .  

Starting from level 2, physicists and computer scientists make different 
further abstractions in accordance with their different goals. It is suggested 
that both groups can benefit greatly by following a common path up to a 
point corresponding to our level 3, i.e., by agreeing on a common concept of 
information flow, at least on the lowest possible level. 

Level 0: Concurrency Structure. Concurrency is short for "the binary 
relation of cotemporality of world points." Here we follow closely the 
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axiomatizations of relativistic space-time as proposed by Reichenbach, 
Lewin, and others since 1923, which are concisely compiled by Carnap 
(1958). For individuals, we take the time layers of signals, the smallest 
propagators of physical effects. Some signals are particles, others propagate 
from particle to particle through interaction. The history of each signal is a 
"world line" and consists of world points. Let x and y be individuals; we 
write x < y iff x :~ y and a signal passes from x to y. We define 

x c o y :  ~* n e i t h e r x < y n o r y < x  
x l i y  : , ,  x < y o r y < x o r x = y  

x li y means that there is a (world) line which passes through x and through 
y. It follows that co and li are reflexive and symmetric, but not that they be 
transitive. We observe that 

x c o y  and xli  y r x = y 
xli  y **(x = y or not x c o y )  

or abbreviated: c o N l i = i d ;  l i = i d U c o .  Let us now forget that < was 
originally introduced as a strict partial ordering (irreflexive and transitive), 
and concentrate on the properties of co, remembering that li and co are 
definable from each other. Let 

C o ( x ) : = ( z l x c o z ) ,  L i ( x ) : = ( z l x l i z )  

If C o ( x ) = C o ( y )  or L i ( x ) = L i ( y ) ,  we shall collect x and y into a cluster; 
such clusters are equivalence classes of world points, and will be the 
individuals of level 1. 

Level 1: Occurrence nets (Brauer, 1980, p. 7 and p. 251ff). Consider a 
short piece of the history of a small number of particles which interact 
occasionally, pairwise (Figure 1). The graphical elements of this Figure will 
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Fig. 1. A piece of the history of five interacting objects. 
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be called occurrences; some elements such as b denote interactions (occur- 
rences of transitions); other elements such as A, B, a, b, x, y denote the 
prerequisites and results of interactions (occurrences of states). In Figure 1, 
we have a co b, A co b, a co x, b li x, x li y, etc. 

We shall now describe the structure of the set X of all occurrences, and 
its partition into a set S of state elements and a set T of transition elements. 
We do so by stating some assumptions (An )  about the relation co in X, 
which is the image of (co on level 0). 

(A1) x E  X ~  x c o x  (co is reflexive) 
(A2) x c o y  r y c o x  (co is symmetric) 
(A3) Co(x)  = Co(y)  ~ Li(x) = Li (y)  

A3 is not quite trivial, although it is equivalent to 

C o ( x ) = C o ( y ) = x = y  and L i ( x ) = L i ( y ) = x = y  

A3 means that level I structures can indeed arise by clustering of world 
points of level 0. This is not so for certain "degenerate" concurrency 
structures with infinitely many world points. (It is instructive to find an 
example.) For Figure 1, A3 implies that c = d, A = a, and that B consists of 
one occurrence only! Therefore B E  X; in terms of ordering, B is an 
immediate successor of b. 

(A4) I XI/> 2 ( X  contains at least two occurrences) 

A4 appears to be harmless, as though it were introduced to exclude the 
formally cumbersome exception of a world without signals. However, in 
conjunction with A3, it implies that occurrences are not totally ordered (on 
a unique universal time scale), and moreover, that 

co 2 -- co ~ O (co is not transitive) 

which holds for relativistic, but not for classical space-time. 
We write xco*y  iff a finite sequence of co steps leads from x to y. We 

assume 

(A5) co* = li* [The structure ( X, co) is "coherent "] 

A5 implies that each pair x, y of occurrences is connected by a finite 
number  of co steps, and also of li steps. 

A subset I C X  will be called a Line iff it is a maximal set of 
occurrences which are pairwise in relation li. 

A subset c C X is called a Cut iff it is a maximal set of occurrences 
which are pairwise in relation co. 
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The old physical postulate (Carnap, 1958) that every Cut represents a 
spatial distribution (either in the spirit of R3, or of some phase space) can 
now be written as "every Cut cuts every Line": 

(A6) Cut (c) and Line (1)= c A l ~  ~ (co is "K  dense") 

which is a nontrivial, global assumption whose relevance to computing is 
being explored by Best (Brauer, 1980). K density implies a local property, 
called "N density" because the smallest possible structure which is not K 
dense can be depicted by an N-shaped diagram (on the left of Figure 2). The 
diagram on the left is K dense only if there exists an element z on a Line 
between x and y such that a Cut through a and b has an element (z)  in 
common with that Line. The usual idea of "plain" density requires some z 
between every pair x v ~ y on a Line, which leads to an infinite number of 
intermediate points. N density requires some intermediate z for a well- 
defined purpose only, and does not lead to an infinite regress when 
Li(z) c Li(x) and Li(z) C Li(y).  Therefore, it seems natural here to define a 
proximity relation P as follows: 

xPy:**Li(x)CLi(y)  a n d x ~  y 

xPy means that all Lines passing through x also pass through y. In the 
example of Figure 1, we have BPb and BPe. We call B a state occurrence (of 
some particle) beginning by the transition occurrence (interaction) b and 
ending by the transition occurrence e. Hence we can read xPy as "x is 
changed by y." In accordance with our interpretation, we shall assume for 
level 1 : 

(AT) p2 = O (there are no changes of changes) 
(A8) For all x, yE X: x(P U p - t ) , y  

A8 is the assumption that ()( ,co) is a combinatorial structure, to which we 
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Fig. 2. Def in i t ion  of N densi ty.  
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assign the topology 

a C X ~ Closure (a):  = aU {yl V x ~  a: xPy)  

This is a "net topology," i.e., a topology with the property that every 
singleton is either open or closed, and that (not only every union but also) 
every intersection of open sets is open. Holt (1982) uses this topology and 
its dual (obtained by substituting " y P x "  for " x P y "  in the definition of 
closure) for a much deeper purpose; we have introduced it merely as a 
mathematical and conceptual tool for reaching all meaningful higher levels 
by applying continuous mappings (in the sense of topology) to level-1 
structures. This tool will not be employed in this paper; for details, see 
Brauer (1980), p. 144ff. On the basis of A7 and A8, the set X can be 
partitioned into S and T: 

S : = domain ( P )  the set of state elements 

T: ---range ( P )  the set of transition elements 

S U T = X ,  S A T = ~ ,  P C S •  P c I i  

Now remember that co has been conceived originally as a disorder relation; 
we have to ask now, what properties co must have so that a consistent 
ordering on X exists, based on a local distinction between "past" and 
"future." The main difficulty here is to permit finite lines (which close to 
cycles of at least four elements) while still permitting the conventional 
infinite lines on which a total ordering exists. 

Referring to Figure 1, we shall say that "b is immediately followed by 
B "  and "B is immediately followed by e" ;  in shorthand: " b F B "  and 
"BFe."  We call a relation F between occurrences a consistent orientation on 
X iff: 

F N F - I = D  and F U F - I = P U P  -I  
and F o F C li ( o denotes relational product) 
and F o F -  ~ C co and F - l o F C c o  

If there are no finite lines, the transitive closure of F is then a strict partial 
ordering on X, just as the relation " < "  which we started with. We make 
three assumptions on ordering, without enquiring into their interdepen- 
dence: 

(A9) A consistent orientation F exists on X. 

This is clearly a global assumption. It can be related to local assumptions by 
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defining the proximity of an occurrence x as 

p ( x ) : = ( y l x P y  or y P x }  

(A10) Within every p ( x ) ,  co 2 C_co (co is locally transitive) 

(Al l )  Within every p(x) ,  O ea~-62 C_co (~--6 is locally orientable) 

where x co y : = ~ x li y and x ~ y. 
We call a structure (X, co) a rope (whose "threads" are the Lines 

defined above) when A1-A11 hold. A rope is a straight rope if it contains no 
finite lines (i.e., F cycles). 

A rope, for which moreover A12 holds, 

(A12) X is a finite set, 

is called a cyclic rope. 
The main consequences (Cn) of our assumptions are: 
(C1) cyclic ropes exist: The rope "axioms" do have finite models. The 

smallest known rope has 12 elements (Figure 3) and has been associated 
with a quantum-mechanical harmonic oscillator at lowest energy level. 

(C2) There are precisely two consistent orientations Ft, F 2 for each 
rope; F 1 = F2- t. Interchanging F I and F 2 corresponds to the formal opera- 
tion of time reversal: t ~ -  t. 

(C3) Cyclic ropes can be represented by graphs, with vertices T, arcs S, 
and incidence relation F. 

(C4) The triple (S, T, F )  definable from each rope fulfills the axioms 
for nets (Brauer, 1980; Holt  and Commoner, 1970; Petri, 1962), namely, 

S N T = ~  ; SUT=/=O ; F C_ (S  • T ) U ( T •  S ) ;  and 

domain (F) U r ange (F )  = S U T 

Graph 
Net Relation co 

Fig. 3. Representations of smallest cyclic rope. 
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Ropes correspond to special kinds of nets: We get 
1. F A F  -I  = ~  (rope nets are "pure"  nets), and 
2. Every S element has exactly one immediate predecessor and exactly 

one immediate successor; i.e., every state occurrence has one begin- 
ning and one ending, in contrast to level-2 structures. Rope nets are 
"synchronization nets" and, if finite, "synchronization graphs" 
(Brauer, 1980, p. 530). Such graphs are often used in distributed 
computing. 

(C5) Straight ropes have a generalized Dedekind continuity, the kind 
of continuity found in the total ordering of real numbers, but generalized 
for partial orders. Those Cuts which contain S elements only play the role 
of real numbers. For details, see Brauer (1980), p. 257ff. 

(C6) The arcs of Feynman graphs may be viewed as S elements of a 
rope, their vertices as T elements. Some of our assumptions do not hold in 
Feynman graphs, for two reasons: 

1. A Feynman graph is not intended to describe the full  history of all 
particles; 

2. A more refined definition of the proximity relation P would be 
needed to take into account the qualitative differences of particles, 
which we have not considered. With P as defined in this paper, A7 
does not permit a spontaneous decay of unstable particles. 

Level 2: Condition-Event Systems (Brauer, 1980; Holt and Commoner, 
1970). They are obtained by folding together a level-1 structure, or part o f  
it, in such a way that, e.g., the occurrences "summer 1979," "summer 1980," 
"summer 1981" are mapped onto a single S element "summer" of level 2. 
We call such an S element a condition and not a state, because we do not 
want to refer to the object which is in that state. Indeed, this object might be 
a different one for each of the repeated occurrences (level 1) of a condition 
(level 2); usually a different signal, but also even a different microscopic or 
macroscopic particle. Likewise, we use the term event for " the  image of a set 
of transition occurrences." Using the description in (S, T, F )  form both on 
level 1 and level 2, the folding must be done in such a way that the relations 
P and F (proximity and direction of flow) are preserved. The resulting 
level-2 net must be pure ( F A F - ~  = ~, i.e., a condition cannot end and begin 
simultaneously. The more regular the behavior history (Level 1) of a set of 
particles is, the smaller can the resulting net be made. The appropriate 
folding of the smallest cyclic rope is an identity map; folding applied to the 
infinite net of Figure 4 yields a net isomorphic to that of Figure 3. 

The important structural difference between level-1 nets and level-2 
nets is that on level 2, S elements (conditions) can have more than one 
immediate predecessor and successor. By avoiding a too-tight folding, we 
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Fig. 4. Partial representations of the rope obtained by "straightening" the rope of Figure 3. 

can ensure that each condition has no more  than two such " input  events," or, 
respectively, "output  events," as we shall call them. To indicate concurrent 
presence, we use black dots (pebbles, tokens) on the elements in the 
graphical representation, to denote the image of some Cut as defined above. 
A level-2 net can be thought of as a "distributed automaton" (a normal 
automaton could carry one pebble only); it can also be thought of as a 
physical system of interacting particles ( and /o r  signals). The behavior of 
the system can be simulated by "pebbling" or the "token game," a 
widespread custom in the computer field. The rules of those games should 
be founded on level-1 concepts; if they are, every simulation yields a unique 

level-1 structure, except in situations of "conf l ic t"  (Figure 5). Suppose that 
condition y is currently holding (the condition symbol C)y carries a pebble) 
and has two output events i and k. Which of them will subsequently have an 
occurrence? We cannot tell; we have too little information. We only know, 
from our considerations on level 1, that i and k cannot have concurrent 

occurrences, since their proximities overlap (a pebble on a condition "can- 
not be split apart"). The conflict can only be resolved if we can look at all 

the precondit ions of i and k. Assume that x, y, and z are all of these. Now if 
x, y, and z are all holding concurrently, the situation would still be a 
conflict. But the system whose description is in Fig. 5 would "stop behaving" 
if the conflict is not resolved! Therefore we shall put down our final 
assumption: 

(A13) Conflicts in condit ion-event systems are resolved. 

This leaves open the question of how they are resolved. Before the resolu- 
tion, the information on "whether i or k "  is not contained in the system 
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~ k  ~ z 

Fig. 5. Conflict situations. 

description (including the position of pebbles); after the resolution, it is. By 
the very act of deciding the conflict between i and k, we shall define, one bit 
of information has come into the system. From where? Not out of the 
system, anyway. Therefore: from its environment, from the rest of the 
universe, if the question "from where" is to have any meaning at all. And if 
the system has no environment? Then it must be a (the) universe itself, 
closed with respect to information flow. If we care to follow this usage of 
words, we can reformulate: 

(A13.1) A detailed level-2 description of the universe contains no 
conflict situations. 

This has been called the assumption (axiom) of "local determinacy" (Brauer, 
1980). 

Remark: The time reversal invariance implied by A 1 - A l l  yields in 
conjunction with, and applied to, A13 a "law of conservation of informa- 
tion," the starting point of Kantor's "information mechanics." This law is 
equivalent to the assumption that the information flux lines of our level 3, 
which we are about to construct now, have no beginning and no ending. 

Level 3: Information Flow Graphs. These are intended to describe the 
flow of information (as opposed to the "flow of pebbles" on level 2!) in the 
greatest possible detail, i.e., in bitwise decomposition. Higher levels can be 
easily reached from level 3 by following well-established lines of thinking. 

Let us take another look at Figure 5 in the light of A13.1. Let us 
assume that (x, y, z} is the full set of preconditions of the events i and 
k - - i n  the universe, not only in the system of particles under consideration. 
Then, by A13.1, since y holds, x and z cannot hold concurrently! The 
conflict situation on the left side of Figure 5 can be resolved only on the 
basis of the distribution of one single holding (pebble) over the set (x, z} of 
conditions. Under our assumptions, the distribution shown on the right side 
of Figure 5 cannot exist We now declare the set (x, z) of level-2 elements 
to be an individual of level 3. In general: we declare every pair (u, v} of 
conditions which are linked by a chain of four F arrows of alternating 
direction, to be an individual of level 3, an individual of type S, like a state 
occurrence and like a condition. Further, we cluster all events of level 2 in 
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such a way that each pair (u, v) has at most one cluster of input events and 
at most one cluster of output events. We do not cluster unless it is 
demanded by these rules. We declare the clusters of events to be individuals 
of level 3 of type T and call these individuals transfers. The level-3 
individuals of type S we call stations. We have produced a net (S, T, F )  of 
stations and transfers. By pebbling on a graphical representation of this net, 
we can observe bits of information flowing from stations to stations, 
interacting with each other in a reversible way while passing through 
transfers. 

But hold on! Our construction has not yet been tested as to whether it 
has a physical meaning. The careful reader will have noticed that a given 
condition u might have no partner v as required to establish a station for 
one bit; or u might belong to a station {u, v} and also to another station 
(u, w}. In the same sense, transfers might overlap, etc. Our answer to this 
dilemma is: The given construction of level 3 has a physical meaning only if 
it is, mathematically, a (continuous)function from level-2 nets onto level-3 
nets. For most of the numerous condit ion-event systems we find in the 
literature under various names, no such function exists, for the simple 
reason that their purpose was not related to bitwise decomposition of 
physical information flow. On the other hand, we can decompose every 
information flow graph into a condition-event net. It remains to convey a 
feeling for the structure and usage of information flow graphs, by employ- 
ing pictorial notations. For details, we must refer to Brauer (1980), Petri 
(1967), and Shaw (1977). (Several blueprints for full-fledged computers exist 
in a graphical level-3 notation.) The main differences from conventional 
switching logic are the following: 

1. By the occurrence of a transfer, its output information appears and 
its input information disappears. 

2. The input information can be recomputed from the output informa- 
tion; transfers are reversible. 

The transfers in Figure 6 are "P1 transfers" only. Their definition in terms 
of level-2 elements is given in Figure 7. Such transfers are not sufficient to 
encompass all Boolean functions needed for computation. Two more types 

a 

d 

e 

a flux line 

a transfer 

a -- -- 

a~b ~ ~ _ A > 

a(~b~c ~- ~ -- 
etc. __~ 1 ""' d c, 

a station 
an influence arc 

Fig. 6. An information flowgraph. Left: Encoding of binary numbers into Gray code. Right: 
Decoding. 
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Level 2 : 

Petri 

I : A 

B ~ / B ~ A  

(folding into Level 3 is indicated by dotted lines) 

Level 3 : 

Ao__ "compute 
(A,B@A) 

from 

(A,B)" --<> 

New notation for activity defined above : 

--t-- 
l 
I 
l 

Abstract notation for information flow graph : 

I > flux (of A) 

influence 

> flux (of B) 

Fig. 7. Construction of a PI transfer. 
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Level 2 : 

folding: 

bv=] b"=O a=O ~ b"= 1 

b"=l b'=O 

'. g:i  w "~ / ' ~ : ~  \ t b~ i l b' 

/ o-=o "~ / I  "1 I , ~  b"--] ~ d - ~ - W I  5 -'~o ~ e' 

Level 3 : 

0 -- 

G ' 
�9 ; 

a• Qu(a~b,c )  
:= a b v b c  

~ e ~ '  �9 "= Q u ( e , b , a )  
:= c~vba 

Fig. 8. Construction of a Q transfer. 
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of entities are required for that purpose:  

1. A transfer with three inputs and three outputs  which embeds a 
logical A N D  reversibly in a Boolean bijection. We choose the 
"Quine transfer" (Q transfer) for  this purpose, because of  its highly 
symmetrical  level-2 decomposi t ion:  Figure 8. 

2. A set of stations such that whenever they contain a bit, that bit 
represents the same Boolean value. Such stations might be called 
"sources of  a constant  bit stream." N o w  a constant  bit stream does 
not  t ransport  information in the usual sense. We need a new concept  
here: we call the bits originating f rom a constant  source bits of  
enlogy, as opposed to bits of  information.  Enlogy is needed, e.g., for 
copying information.  

C O N C L U D I N G  R E M A R K S  O N  E X P E R I E N C E  

After  a certain amount  of exercise, it becomes quite easy to produce logical 
designs of considerable size in terms of  information flow graphs, mainly, in 
the beginning, by a modular  approach.  These designs get a quite new 
quality when one treats enlogy as a scarce resource and demands  economical  
use of enlogy. One tries to construct,  in addit ion to the desired outputs,  
entogy s inks  at the expense of, in the worst case, doubl ing the size of  the 
design. Thus, enlogy can be recycled by identifying sinks and sources of  
enlogy. In a physical implementation,  this means avoiding dissipation, or 
degradation,  of energy. 

Ent ropy has been studied in terms of  enlogy loss. 
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